Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria.

نویسندگان

  • Daniel M Stoebel
  • Andrew Free
  • Charles J Dorman
چکیده

The H-NS nucleoid-associated DNA-binding protein is an important global repressor of transcription in Gram-negative bacteria. Recently, H-NS has been implicated in the process of xenogeneic silencing, where it represses the transcription of foreign genes acquired by horizontal transfer. This raises interesting questions about the integration of the horizontally acquired genes into the existing gene regulatory networks of the microbe. In particular, how do bacteria derepress silenced genes in order to benefit from their expression without compromising competitive fitness through doing so inappropriately? This article reviews current knowledge about the derepression of genes that are transcriptionally silenced by H-NS. It describes a variety of anti-silencing mechanisms involving (i) protein-independent processes that operate at the level of local DNA structure, (ii) DNA-binding proteins such as Ler, LeuO, RovA, SlyA, VirB, and proteins related to AraC, and (iii) modulatory mechanisms in which H-NS forms heteromeric protein-protein complexes with full-length or partial paralogues such as StpA, Sfh, Hha, YdgT, YmoA or H-NST. The picture that emerges is one of apparently ad hoc solutions to the problem of H-NS-mediated silencing, suggesting that microbes are capable of evolving anti-silencing methods based on the redeployment of existing regulatory proteins rather than employing dedicated, bespoke antagonists. There is also evidence that in a number of cases more sophisticated regulatory processes have been superimposed on these rather simple anti-silencing mechanisms, broadening the range of environmental signals to which H-NS-repressed genes respond.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H-NS and H-NS-like proteins in Gram-negative bacteria and their multiple role in the regulation of bacterial metabolism.

In Escherichia coli, the H-NS protein plays an important role in the structure and the functioning of bacterial chromosome. A homologous protein has also been identified in several enteric bacteria and in closely related organisms such as Haemophilus influenzae. To get information on their structure and their function, we identified H-NS-like proteins in various microorganisms by different proc...

متن کامل

H-NS family members function coordinately in an opportunistic pathogen.

The histone-like nucleoid structuring protein, H-NS, is a prominent global regulator of gene expression. Many Gram-negative bacteria contain multiple members of the H-NS family of proteins. Thus, a key question is whether H-NS family members have overlapping or distinct functions. To address this question we performed genome-wide location analyses with MvaT and MvaU, the two H-NS family members...

متن کامل

H-NS and genomic bridge building: lessons from the human pathogen Salmonella Typhi

The H-NS protein has emerged as one of the leading causes of transcriptional repression in Gram-negative bacteria. In a paper published in this issue, De la Cruz and colleagues shed new light on the role of DNA curvature in the repressive mechanism, using a porin gene promoter from the human pathogen Salmonella Typhi as their experimental system (De la Cruz et al., 2009). Their data help to dee...

متن کامل

Gene Activation through the Modulation of Nucleoid Structures by a Horizontally Transferred Regulator, Pch, in Enterohemorrhagic Escherichia coli

The horizontally transferred chromosomal segments, which are the main source of genetic diversity among bacterial pathogens, are bound by the nucleoid protein H-NS, resulting in the formation of a nucleoprotein complex and the silencing of gene expression. The de-silencing or activation of virulence genes necessary for the colonization of enterohemorrhagic Escherichia coli is achieved mainly by...

متن کامل

Lsr2 of Mycobacterium represents a novel class of H-NS-like proteins.

Lsr2 is a small, basic protein present in Mycobacterium and related actinomycetes. Our previous in vitro biochemical studies showed that Lsr2 is a DNA-bridging protein, a property shared by H-NS-like proteins in gram-negative bacteria. Here we present in vivo evidence based on genetic complementation experiments that Lsr2 is a functional analog of H-NS, the first such protein identified in gram...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 154 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2008